Hi Everyone,
Attached are the solutions for the first three problems only (to not spoil the fun of the 7 problems that are due this week).
Update(9/15/2015): The full set of solution is posted below.
Hi Everyone,
Attached are the solutions for the first three problems only (to not spoil the fun of the 7 problems that are due this week).
Update(9/15/2015): The full set of solution is posted below.
Hi all,
I’ve attached the solutions for Chapter 5. (We’re about halfway done with this book!)
Hi all,
I’ve attached the exercise solutions for Chapters 3 and 4 as separate pdf’s. Please let me know if there are any mistakes or errors in logic.
Thanks!
Exercise 2.1
Assume that and $\ket{d}$ are normalized basis vectors. And let:
$\ket{l} = \frac{1}{\sqrt{2}}\ket{u} - \frac{1}{\sqrt{2}}\ket{d}$
Prove that $\ket{r}$ is orthogonal to $\ket{l}$
pf/ $\ket{r}$ and $\ket{l}$ are orthogonal iff $\braket{r}{l} = 0$
\begin{tabular}{p{13cm}}
Now $\bra{r} = \overline{\ket{r}}$
And $\overline{\ket{r}} = \overline{\dfrac{1}{\sqrt{2}}\ket{u} + \dfrac{1}{\sqrt{2}}\ket{d}}$
$= \overline{\dfrac{1}{\sqrt{2}}\ket{u}} + \overline{\dfrac{1}{\sqrt{2}}\ket{d}} $ \hfill $(\overline{a+b} = \overline{a}+\overline{b})$
$= \overline{\dfrac{1}{\sqrt{2}}}\overline{\ket{u}} + \overline{\dfrac{1}{\sqrt{2}}}\overline{\ket{d}} $ \hfill $(\overline{ab} = \overline{a}\overline{b})$
So $ \bra{r} = \dfrac{1}{\sqrt{2}}\bra{u} + \dfrac{1}{\sqrt{2}}\bra{d} $ \hfill $(\overline{\ket{a}} = \bra{a})$
\end{tabular}
Now, $\braket{r}{l} = (\dfrac{1}{\sqrt{2}}\bra{u} + \dfrac{1}{\sqrt{2}}\bra{d}) \cdot (\dfrac{1}{\sqrt{2}}\ket{u} - \dfrac{1}{\sqrt{2}}\ket{d})$
\begin{tabular}{p{13cm}}
= $\dfrac{1}{2}\braket{u}{u} - \dfrac{1}{2} \braket{l}{l}$
= $ \dfrac{1}{2} *1 - \dfrac{1}{2}*1 = 0$ \hfill (Since $\bra{u}$ is normalized, $\braket{u}{u} = 1$)
So therefore $\braket{r}{l} = 0$
\end{tabular}
Exercise 2.2
Exercise 2.3
Let $\ket{i} = a\ket{u} + b\ket{d}$ and $\ket{o} = c\ket{u} + e\ket{d}$
\begin{tabular}{p{13cm}}
a) $a^*a = \braket{u}{i}\braket{i}{u} = 0.5$ \hfill (b/c when the spin is set to in, the prob of up is 0.5)
b)
c)
Say that $a^*b$ was real. Then $a^*b = (a^* b)^* = ba^*$. (real number are equal to their complex conjugates.) But then $a^*b + ba^* = 0 = 2a^*b$. But then either $a^*$ or $b$ must be 0. But then either $a^*a$ or $b^*b$ must be equal to 0 which contradicts.
\end{tabular}
[latexpage]
a) Using the axioms of inner products, we are asked to prove
\[
\{<A|+<B|\}|C>\,=\, <A|C>+<B|C>
\]
Solution:
Let $<D|=\{<A|+<B|\}$. Using the second axiom of inner products
\[
\\<C|D>=<D|C>^ {\ast}
\]
Now lets substitute $|D>$
\[
\\<C|\{|A>+|B>\}=(\{<A|+<B|\}|C>)^ {\ast}
\]
Which, using the first axiom of inner products, becomes
\[
\\<C|A>+<C|B>=(\{<A|+<B|\}|C>)^ {\ast}
\]
Lastly, we compute the complex conjugates of each term
\[
\\<C|A>^ {\ast}+<C|B>^ {\ast}=(\{<A|+<B|\}|C>)^ {\ast}^ {\ast}
\]
\[
\\<A|C>+<B|C>=\{<A|+<B|\}|C>
\]
Which is the proof that we were seeking.
b) Prove $<A|A>$ is a real number
Here we will use the component notation. The bra $<A|$ and ket $|A>$ in component notation are:
\[
<A|=\sum\nolimits_{i=1} \alpha_i^{\ast}<i|
\]
\[
|A>=\sum\nolimits_{j=1} \alpha_j|j>
\]
If we take the inner product we find
\[
<A|A>=\sum\nolimits_{j=1}\sum\nolimits_{i=1} \alpha_i^{\ast}\alpha_j<i|j>
\]
Since $<i|j>=0$ when $i\neq j$ and $<i|j>=1$ when $i= j$, the previous becomes
\[
<A|A>=\sum\nolimits_{j=1} \alpha_j^{\ast}\alpha_j
\]
Now, remembering that any complex number multiplied by its complex conjugate yields a real number, we can conclude that the previous expression is a summation of real numbers. Therefore, we conclude that $<A|A>$ is a real number too
\[
\\<B|A>=\beta_1^ {\ast}\alpha_1+\beta_2^ {\ast}\alpha_2+\beta_3^ {\ast}\alpha_3+\beta_4^ {\ast}\alpha_4+\beta_5^ {\ast}\alpha_5
\]
satisfies all the axioms of inner products.
Solution:
The first axiom is
\[
\\<C|\{|A>+|B>\}=<C|A>+<C|B>
\]
Let us introduce the bra vector $<C|$
\[
\\<C|=\left(\begin{matrix}
c^{\ast}_1 & c^{\ast}_2 & c^{\ast}_3 &c^{\ast}_4 & c^{\ast}_5
\end{matrix}\right)
\]
The left side of the axiom in explicit form is
\[
\\<C|\{|A>+|B>\}=\left(\begin{matrix}
c^{\ast}_1 & c^{\ast}_2 & c^{\ast}_3 &c^{\ast}_4 & c^{\ast}_5
\end{matrix}\right)
\left(\begin{matrix}
\alpha_1+\beta_1\\
\alpha_2+\beta_2\\
\alpha_3+\beta_3\\
\alpha_4+\beta_4\\
\alpha_5+\beta_5
\end{matrix}\right)
\]
Working out the vector multiplication and rearranging we find
\[
\\<C|\{|A>+|B>\}=
c^{\ast}_1\alpha_1+c^{\ast}_1\beta_1+
c^{\ast}_2\alpha_2+c^{\ast}_2\beta_2+
c^{\ast}_3\alpha_3+c^{\ast}_3\beta_3+
c^{\ast}_4\alpha_4+c^{\ast}_4\beta_4+
c^{\ast}_5\alpha_5+c^{\ast}_5\beta_5
\]
\[
\\<C|\{|A>+|B>\}=
(c^{\ast}_1\alpha_1+
c^{\ast}_2\alpha_2+
c^{\ast}_3\alpha_3+
c^{\ast}_4\alpha_4+
c^{\ast}_5\alpha_5)+
(c^{\ast}_1\beta_1+
c^{\ast}_2\beta_2+
c^{\ast}_3\beta_3+
c^{\ast}_4\beta_4+
c^{\ast}_5\beta_5)
\]
\[
\\<C|\{|A>+|B>\}=<C|A>+<C|B>
\]
Proving the first axiom. The second axiom is
\[
<B|A>=<A|B>^{\ast}
\]
We can start this proof computing the complex conjugate of <B|A>
\[
\\<B|A>^{\ast}=(\beta_1^ {\ast}\alpha_1+\beta_2^ {\ast}\alpha_2+\beta_3^ {\ast}\alpha_3+\beta_4^ {\ast}\alpha_4+\beta_5^ {\ast}\alpha_5)^{\ast}
\]
Computing the complex conjugate for each term in the right yields
\[
\\<B|A>^{\ast}=\beta_1\alpha_1^{\ast}+\beta_2\alpha_2^{\ast}+\beta_\alpha_3^{\ast}+\beta_4\alpha_4^{\ast}+\beta_5\alpha_5^{\ast}
\]
Since the terms in the right commute, we can write
\[
\\<B|A>^{\ast}=\alpha_1^{\ast}\beta_1+\alpha_2^{\ast}\beta_2+\alpha_3^{\ast}\beta_3+\alpha_4^{\ast}\beta_4+\alpha_5^{\ast}\beta_5=<A|B>
\]
Taking the complex conjugate of all terms we find
\[
\\(<B|A>^{\ast})^{\ast}=<A|B>^{\ast}
\]
And therefore
\[
\\<B|A>=<A|B>^{\ast}
\]