Rice University logo
 
Top blue bar image
Applying analytical and quantum theory principles to civil infrastructure systems
 

Solutions for Chapter 1

Exercise 1.1

[latexpage]
a) Using the axioms of inner products, we are asked to prove

\[

\{<A|+<B|\}|C>\,=\, <A|C>+<B|C>

\]

Solution:

Let $<D|=\{<A|+<B|\}$. Using the second axiom of inner products

\[

\\<C|D>=<D|C>^ {\ast}

\]

Now lets substitute $|D>$

\[

\\<C|\{|A>+|B>\}=(\{<A|+<B|\}|C>)^ {\ast}

\]

Which, using the first axiom of inner products, becomes

\[

\\<C|A>+<C|B>=(\{<A|+<B|\}|C>)^ {\ast}

\]

Lastly, we compute the complex conjugates of each term

\[

\\<C|A>^ {\ast}+<C|B>^ {\ast}=(\{<A|+<B|\}|C>)^ {\ast}^ {\ast}

\]

\[

\\<A|C>+<B|C>=\{<A|+<B|\}|C>

\]

Which is the proof that we were seeking.

b) Prove $<A|A>$ is a real number

Here we will use the component notation. The bra $<A|$ and ket $|A>$ in component notation are:

\[

<A|=\sum\nolimits_{i=1} \alpha_i^{\ast}<i|

\]

\[

|A>=\sum\nolimits_{j=1} \alpha_j|j>

\]

If we take the inner product we find

\[

<A|A>=\sum\nolimits_{j=1}\sum\nolimits_{i=1}  \alpha_i^{\ast}\alpha_j<i|j>

\]

Since  $<i|j>=0$ when $i\neq j$ and  $<i|j>=1$ when $i= j$, the previous becomes

\[

<A|A>=\sum\nolimits_{j=1}  \alpha_j^{\ast}\alpha_j

\]

Now, remembering that any complex number multiplied by its complex conjugate yields a real number, we can conclude that the previous expression is a summation of real numbers. Therefore,  we conclude that $<A|A>$ is a real number too

Exercise 1.2

 Show that the inner product

\[

\\<B|A>=\beta_1^ {\ast}\alpha_1+\beta_2^ {\ast}\alpha_2+\beta_3^ {\ast}\alpha_3+\beta_4^ {\ast}\alpha_4+\beta_5^ {\ast}\alpha_5

\]

satisfies all the axioms of inner products.

Solution:

The first axiom is

\[

\\<C|\{|A>+|B>\}=<C|A>+<C|B>

\]

Let us introduce the bra vector $<C|$

\[

\\<C|=\left(\begin{matrix}

c^{\ast}_1 & c^{\ast}_2 &  c^{\ast}_3 &c^{\ast}_4 & c^{\ast}_5

\end{matrix}\right)

\]

The left side of the axiom in explicit form is

\[

\\<C|\{|A>+|B>\}=\left(\begin{matrix}

c^{\ast}_1 & c^{\ast}_2 &  c^{\ast}_3 &c^{\ast}_4 & c^{\ast}_5

\end{matrix}\right)

\left(\begin{matrix}

\alpha_1+\beta_1\\

\alpha_2+\beta_2\\

\alpha_3+\beta_3\\

\alpha_4+\beta_4\\

\alpha_5+\beta_5

\end{matrix}\right)

\]

Working out the vector multiplication and rearranging we find

\[

\\<C|\{|A>+|B>\}=

c^{\ast}_1\alpha_1+c^{\ast}_1\beta_1+

c^{\ast}_2\alpha_2+c^{\ast}_2\beta_2+

c^{\ast}_3\alpha_3+c^{\ast}_3\beta_3+

c^{\ast}_4\alpha_4+c^{\ast}_4\beta_4+

c^{\ast}_5\alpha_5+c^{\ast}_5\beta_5

\]

\[

\\<C|\{|A>+|B>\}=

(c^{\ast}_1\alpha_1+

c^{\ast}_2\alpha_2+

c^{\ast}_3\alpha_3+

c^{\ast}_4\alpha_4+

c^{\ast}_5\alpha_5)+

(c^{\ast}_1\beta_1+

c^{\ast}_2\beta_2+

c^{\ast}_3\beta_3+

c^{\ast}_4\beta_4+

c^{\ast}_5\beta_5)

\]

\[

\\<C|\{|A>+|B>\}=<C|A>+<C|B>

\]

Proving the first axiom. The second axiom is

\[

<B|A>=<A|B>^{\ast}

\]

We can start this proof computing the complex conjugate of <B|A>

\[

\\<B|A>^{\ast}=(\beta_1^ {\ast}\alpha_1+\beta_2^ {\ast}\alpha_2+\beta_3^ {\ast}\alpha_3+\beta_4^ {\ast}\alpha_4+\beta_5^ {\ast}\alpha_5)^{\ast}

\]

Computing the complex conjugate for each term in the right yields

\[

\\<B|A>^{\ast}=\beta_1\alpha_1^{\ast}+\beta_2\alpha_2^{\ast}+\beta_\alpha_3^{\ast}+\beta_4\alpha_4^{\ast}+\beta_5\alpha_5^{\ast}

\]

Since the terms in the right commute, we can write

\[

\\<B|A>^{\ast}=\alpha_1^{\ast}\beta_1+\alpha_2^{\ast}\beta_2+\alpha_3^{\ast}\beta_3+\alpha_4^{\ast}\beta_4+\alpha_5^{\ast}\beta_5=<A|B>

\]

Taking the complex conjugate of all terms we find

\[

\\(<B|A>^{\ast})^{\ast}=<A|B>^{\ast}

\]

And therefore

\[

\\<B|A>=<A|B>^{\ast}

\]

Comments are closed.