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Exercise 6.1

Prove that if P (a, b) factorizes, then the correlation between a and b is zero.

Solution

On page 158 we are given an expression for computing the statistical corre-
lation between observations σa and σb.

〈σaσb〉 − 〈σa〉 〈σb〉

Therefore, we need to prove that 〈σaσb〉− 〈σa〉 〈σb〉 = 0 when P (a, b) factor-
izes. We can re-write this equation as follows

〈σaσb〉 = 〈σa〉 〈σb〉 (1)

The expectation values (Section 4.7) 〈σa〉 and 〈σb〉 can be written as (Eq.
4.11)

〈σa〉 =
∑
a

σa · PA(σa)

and
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〈σb〉 =
∑
b

σb · PB(σb)

Which are no other than weighted sums, this is, sum of possible outcomes
weighted with the probability functions PA or PB respectively.

Likewise, we can write 〈σaσb〉 as

〈σaσb〉 =
∑
a,b

σaσb · P (σa, σb)

Therefore, equation (1) becomes

∑
a,b

σaσb · P (σa, σb) =
∑
a

σa · PA(σa)
∑
b

σb · PB(σb)

If P (σa, σb) factors into PA(σa)PB(σb). The previous equation becomes

∑
a,b

σa · PA(σa) · σb · PB(σb) =
∑
a

σa · PA(σa)
∑
b

σb · PB(σb)

And finally

∑
a

σa · PA(σa) ·
∑
b

σb · PB(σb) =
∑
a

σa · PA(σa)
∑
b

σb · PB(σb)

Since the equality (1) is satisfied, there is no statistical correlation between
observations σa and σb when P (a, b) factorizes.

Exercise 6.2

Show that if the two normalization conditions of Eqs. 6.4 are satisfied, then
the state-vector of Eq. 6.5 is automatically normalized as well. In other
words, show that for this product state, normalizing the overall state-vector
does not put any additional constraints on the α’s and β’s.

Solution

Fore reference, Eqs. 6.4 are
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α∗uαu + α∗dαd = 1

β∗uβu + β∗dβd = 1

And Eq. 5

|product state〉 = αuβu |uu〉+ αuβd |ud〉+ αdβu |du〉+ αdβd |dd〉

If |product state〉 is normalized, then the inner product with itself yields the
unit length. This is, 〈product state|product state〉 = 1.

The bra form of Eq. 5 is

〈product state| = α∗uβ
∗
u 〈uu|+ α∗uβ

∗
d 〈ud|+ α∗dβ

∗
u 〈du|+ α∗dβ

∗
d 〈dd|

Remembering that the inner product 〈i|j〉 between any orthonormal vectors
i and j, yields zero if i 6= j and one if i = j. We can compute

〈product state|product state〉 = (α∗uβ
∗
u 〈uu|+ α∗uβ

∗
d 〈ud|+ α∗dβ

∗
u 〈du|+ ...

α∗dβ
∗
d 〈dd|) · (αuβu |uu〉+ αuβd |ud〉+ αdβu |du〉+ αdβd |dd〉)

which working out the math we get

〈product state|product state〉 = α∗uαuβ
∗
uβu + α∗uαuβ

∗
dβd + ...

α∗dαdβ
∗
uβu + α∗dαdβ

∗
dβd

if we factor the terms we find

〈product state|product state〉 = (α∗uαu + α∗dαd)(β
∗
uβu + β∗dβd)

Finally, introducing Eqs. 6.4 we find

〈product state|product state〉 = (1)(1) = 1
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Therefore, normalizing the product state vector does not introduce any ad-
ditional constraints on the α’s and β’s.

Exercise 6.3

Prove that the state |sing〉 cannot be written as a product state.

Solution

Equation 6.5 and Section 6.6 tell us that such a product state can be de-
scribed with four complex numbers, namely αu and αd for system A and
βu and βd for system B. With this idea in mind we will prove that |sing〉
cannot be written as a product state.

First, lets assume that we can write |sing〉 as a product state. Under that
assumption, we will attempt to compute the four complex numbers (the α’s
and β’s) using the following system of equations.

αuβu = 0

αuβd = 1/
√

2

αdβu = −1/
√

2

αdβu = 0

However, it is easy to realize that we can not satisfy the previous system of
equations (e.g. first and second suggest that βu = 0 but our third equation
suggests otherwise) and therefore |sing〉 cannot be written as a product
state.

Exercise 6.4

Use the matrix forms of σz,σx, and σy and the column vectors for |u} and
|d} to verify Eqs. 6.6. Then, use Eqs. 6.6 and 6.7 to write the equations
that were left out of Eqs. 6.8. Use the appendix to check your answers.

Solution
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First we need to verify (Equations 6.6) that

σz|u} = |u}

σz|d} = −|d}

σx|u} = |d}

σx|d} = |u}

σy|u} = i|d}

σy|u} = −i|u}

The spin operators σz,σx, and σy in matrix form are

σz =

(
1 0
0 −1

)

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)
And the column vectors for |u} and |d} are

|u} =

{
1
0

}

|d} =

{
0
1

}
Now we apply each operator to each vector and verify with Eqs. 6.6
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σz|u} =

(
1 0
0 −1

){
1
0

}
=

{
1
0

}
= |u}

σz|d} =

(
1 0
0 −1

){
0
1

}
=

{
0
−1

}
= −|d}

σx|u} =

(
0 1
1 0

){
1
0

}
=

{
0
1

}
= |d}

σx|d} =

(
0 1
1 0

){
0
1

}
=

{
1
0

}
= |u}

σy|u} =

(
0 −i
i 0

){
1
0

}
=

{
0
i

}
= i|d}

σy|u} =

(
0 −i
i 0

){
0
1

}
=

{
−i
0

}
= −i|u}

The expressions above are consistent with Eqs. 6.6 and therefore we verified
them using matrix forms of spin operators and column vectors. Now we
need to use Eqs. 6.6 and 6.7 to write the equations that were left out of
Eqs. 6.8. Equations 6.7 are

τz|u} = |u}

τz|d} = −|d}

τx|u} = |d}

τx|d} = |u}

τy|u} = i|d}

τy|u} = −i|u}
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Also, Eqs. 6.8 are

σz|uu} = |u}

σz|du} = −|d}

σx|ud} = |d}

σx|dd} = |u}

σy|uu} = i|d}

σy|du} = −i|u}

τz|uu} = |u}

τz|du} = −|d}

τx|ud} = |d}

τx|du} = |u}

τy|uu} = i|d}

τy|dd} = −i|u}

The equations that were left out can be viewed as blank entries in the next
table

|uu〉 |ud〉 |du〉 |dd〉
σz |uu〉 − |du〉
σx |dd〉 |ud〉
σy i |du〉 −i |uu〉
τz |uu〉 |du〉
τx |uu〉 |dd〉
τy i |ud〉 −i |du〉
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In order to fill out the rest of the table we will proceed as follows for the
entry in the first row and second column

σz |ud〉 = (σz ⊗ I) · (|u} ⊗ |d〉)

= (σz|u})⊗ (I |d〉)

= (|u})⊗ (|d〉)

= |ud〉

Replicating this procedure for the rest of the blank entries we can complete
the table as follows

|uu〉 |ud〉 |du〉 |dd〉
σz |uu〉 |ud〉 − |du〉 − |dd〉
σx |du〉 |dd〉 |uu〉 |ud〉
σy i |du〉 i |dd〉 −i |uu〉 −i |ud〉
τz |uu〉 − |ud〉 |du〉 − |dd〉
τx |ud〉 |uu〉 |dd〉 |du〉
τy i |ud〉 −i |uu〉 i |dd〉 −i |du〉

Exercise 6.5

Prove the following theorem:

When any of Alice’s or Bob’s spin operators acts on a product state, the
result is still a product state.

Show that in a product state, the expectation value of any component of ~σ
or ~τ is exactly the same as it would be in the individual single spin-states.

Solution

First we show that when any of Allice’s or Bob’s spin operators acts on a
product state, the result is still a product state.

A product state can be defined as follows (Eq. 6.5)
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|product state〉 = {αu|u} + αd|d}} ⊗ {βu |u〉+ βd |d|〉}

Where the α and β terms are constants. Now if any of Alice’s (σn) or Bob’s
(τn) spin operators act on the product state we find

{σn ⊗ τn} · |product state〉 = {σn · (αu|u} + αd|d})} ⊗ {τn · (βu|u} + βd|d})}

= {γu|u} + γd|d}} ⊗ {δu |u〉+ δd |d|〉}

Where the γ and δ terms are constants. The previous expression continues
to satisfy the definition of a product state.

For the later part we need to show that the expectation value of any com-
ponent of ~σ or ~τ is the same the same in both product state and single-spin
states.

The most general form of a component of ~σ is given in Eq. 3.22 (and Eq.
3.23) as follows

σn = ~σ · ~n
= σxnx + σyny + σznz

=

(
0 1
1 0

)
nx +

(
0 −i
i 0

)
ny +

(
1 0
0 −1

)
nz

=

(
nz (nx − iny)

(nx + iny) −nz

)
Therefore, we can also define a component of ~τ as

τm =

(
mz (mx − imy)

(mx + imy) −mz

)

The bra and ket vectors of Alice’s single spin state (Beginning of Subsection
6.5 p.163) are

|A〉 = αu|u} + αd|d}
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〈A| = α∗u{u| + α∗d{d|

Now the expectation value of the component σn is given by

〈A|σn |A〉 = 〈A|

 nz (nx − iny)

(nx + iny) −nz

 (αu

1

0

+ αd

1

0

)

= 〈A|

αu
 nz

(nx + iny)

+ αd

nx − iny−nz




= (α∗u{u| + α∗d{d|)

αunz + αd(nx − iny)

αu(nx + iny)− αdnz




=
(
α∗u

{
1 0

}
+ α∗d

{
0 1

})αunz + αd(nx − iny)

αu(nx + iny)− αdnz




= α∗u{αunz + αd(nx − iny)}+ α∗d{αu(nx + iny)− αdnz}

Rearranging the previous expression we find

〈A|σn |A〉 = nx(α∗uαd + α∗dαu)− iny(α∗uαd − α∗dαu) + nz(α
∗
uαu − α∗dαd)

In a similar fashion we find that the expected value for the component τn in
Bob’s single spin state is

〈B| τm |B〉 = mx(β∗uβd + β∗dβu)− imy(β
∗
uβd − β∗dβu) +mz(β

∗
uβu − β∗dβd)

Now we need to compute expectation values of σn and τn in the product
state. To keep the computations tractable yet explicit we will use the com-
ponents in the form

σn = (σxnx + σyny + σznz)⊗ I
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τm = I ⊗ (τxmx + τymy + τzmz)

instead of the matrix and column vector form. We define a product state
|PS〉

|PS〉 = {αu|u} + αd|d}} ⊗ {βu |u〉+ βd |d〉}

Or in bra form

〈PS| = {α∗u{u|+ α∗d{d|} ⊗ {β∗u 〈u|+ β∗d 〈d|}

First we compute the expected value of σn in |PS〉

〈PS|σn |PS〉 = 〈PS| [{(σxnx + σyny + σznz)⊗ I}{(αu|u} + αd|d})⊗ (βu |u〉+ βd |d〉)}]

= 〈PS| [{(σxnx + σyny + σznz)(αu|u} + αd|d})} ⊗ {I(βu |u〉+ βd |d〉)}]

= 〈PS| [{((nx + iny)αu − nzαd)|d}+ ((nx − iny)αd + nzαu)|u}} ⊗ {βu |u〉+ βd |d〉}]

= [{α∗u{u|+ α∗d{d|} ⊗ {β∗u 〈u|+ β∗d 〈d|}] · [{((nx + iny)αu − nzαd)|d}+ ...

((nx − iny)αd + nzαu)|u}} ⊗ {βu |u〉+ βd |d〉}]

= {α∗u{u|+ α∗d{d|}{((nx + iny)αu − nzαd)|d}+ ((nx − iny)αd + nzαu)|u}} ⊗ ...

{β∗u 〈u|+ β∗d 〈d|}{βu |u〉+ βd |d〉}

= {α∗u((nx − iny)αd + nzαu) + α∗d((nx + iny)αu − nzαd)} ⊗ {β∗uβu + β∗dβd}

Rearranging we find

〈PS|σn |PS〉 = {nx(α∗uαd+α
∗
dαu)−iny(α∗uαd−α∗dαu)+nz(α

∗
uαu−α∗dαd)}⊗{β∗uβu+β∗dβd}

Likewise, we can compute the expected value of τm in |PS〉 and we find
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〈PS| τm |PS〉 = {α∗uαu+α∗dαd}⊗{mx(β∗uβd+β
∗
dβu)−imy(β

∗
uβd−β∗dβu)+mz(β

∗
uβu−β∗dβd)}

It is easy to realize that imposing the normalization conditions in Eqs. 6.4

α∗uαu + α∗dαd = 1

β∗uβu + β∗dβd = 1

the previous expressions reduce the single-spin cases. This is

〈PS|σn |PS〉 = {nx(α∗uαd + α∗dαu)− iny(α∗uαd − α∗dαu) + nz(α
∗
uαu − α∗dαd)} ⊗ 1

= nx(α∗uαd + α∗dαu)− iny(α∗uαd − α∗dαu) + nz(α
∗
uαu − α∗dαd)

and

〈PS| τm |PS〉 = 1⊗ {mx(β∗uβd + β∗dβu)− imy(β
∗
uβd − β∗dβu) +mz(β

∗
uβu − β∗dβd)}

= mx(β∗uβd + β∗dβu)− imy(β
∗
uβd − β∗dβu) +mz(β

∗
uβu − β∗dβd)

Therefore we proved that

〈PS|σn |PS〉 = 〈A|σn |A〉

〈PS| τm |PS〉 = 〈B| τm |B〉
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Exercise 6.6

Assume Charlie has prepared the two spins in the singlet state. This time,
Bob measures τy and Alice measures σx. What is the expectation value of
σxτy?

What does this say about the correlation between the two measurements?

Solution

Using the table of page 350 (appendix of the book) we proceed computing
the expectation value of σxτy as follows

〈sing|σxτy |sing〉 = 〈sing|σxτy 1√
2
(|ud〉 − |du〉)

= 〈sing|σx 1√
2
(−i |uu〉 − i |dd〉)

= 〈sing| 1√
2
(−i |du〉 − i |ud〉)

= 1√
2
(〈ud| − 〈du|) 1√

2
(−i |du〉 − i |ud〉)

= 1
2(0− i+ 0 + i)

= 0

I think that there is no correlation between the measurements because the
expectation value of σxτy is 0, this is, the outcome of the composite observ-
able is completely uncertain even though we know the state-vector (as in we
know the system but anything about its parts).

Exercise 6.7

Next Charlie prepares the spins in a different state, called |T1〉 , where

|T1〉 =
1√
2

(|ud〉+ |du〉)

In these examples, T stands for triple. These triplet states are completely
different from the states in the coin and die examples. What are the expec-
tation values of the operators σzτz, σxτx, and σyτy?
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What a difference a sign can make!

Solution

We compute the expectation values for the operators σzτz, σxτx, and σyτy;
using again the table in page 350 as follows

〈T1|σzτz |T1〉 = 〈T1|σzτz 1√
2
(|ud〉+ |du〉)

= 〈T1|σz 1√
2
(− |ud〉+ |du〉)

= 〈T1| 1√
2
(− |ud〉 − |du〉)

= 1√
2
(〈ud|+ 〈du|) 1√

2
(− |ud〉 − |du〉)

= 1
2(−1− 0− 0− 1)

= −1

〈T1|σxτx |T1〉 = 〈T1|σxτx 1√
2
(|ud〉+ |du〉)

= 〈T1|σx 1√
2
(|uu〉+ |dd〉)

= 〈T1| 1√
2
(|du〉+ |ud〉)

= 1√
2
(〈ud|+ 〈du|) 1√

2
(|du〉+ |ud〉)

= 1
2(0 + 1 + 1 + 0)

= +1
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〈T1|σyτy |T1〉 = 〈T1|σyτy 1√
2
(|ud〉+ |du〉)

= 〈T1|σy 1√
2
(i |uu〉 − i |dd〉)

= 〈T1| 1√
2
(−i2 |du〉 − i2 |ud〉)

= 1√
2
(〈ud|+ 〈du|) 1√

2
(|du〉+ |ud〉)

= 1
2(0 + 1 + 1 + 0)

= +1

Exercise 6.8

Do the same for the other two entangled triplet states,

|T2〉 =
1√
2

(|uu〉+ |dd〉)

|T3〉 =
1√
2

(|uu〉 − |dd〉)

Solution

We start with |T2〉 as follows

〈T2|σzτz |T2〉 = 〈T2|σzτz 1√
2
(|uu〉+ |dd〉)

= 〈T2|σz 1√
2
(|uu〉 − |dd〉)

= 〈T2| 1√
2
(|uu〉+ |dd〉)

= 1√
2
(〈uu|+ 〈dd|) 1√

2
(|uu〉+ |dd〉)

= 1
2(1 + 0 + 0 + 1)

= +1
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〈T2|σxτx |T2〉 = 〈T2|σxτx 1√
2
(|uu〉+ |dd〉)

= 〈T2|σx 1√
2
(|ud〉+ |du〉)

= 〈T2| 1√
2
(|dd〉+ |uu〉)

= 1√
2
(〈uu|+ 〈dd|) 1√

2
(|dd〉+ |uu〉)

= 1
2(0 + 1 + 1 + 0)

= +1

〈T2|σyτy |T2〉 = 〈T2|σyτy 1√
2
(|uu〉+ |dd〉)

= 〈T2|σy 1√
2
(i |ud〉 − i |du〉)

= 〈T2| 1√
2
(i2 |dd〉+ i2 |uu〉)

= 1√
2
(〈uu|+ 〈dd|) 1√

2
(− |dd〉 − |uu〉)

= 1
2(−0− 1− 1− 0)

= −1

Now we do the same for |T3〉

〈T3|σzτz |T3〉 = 〈T3|σzτz 1√
2
(|uu〉 − |dd〉)

= 〈T3|σz 1√
2
(|uu〉+ |dd〉)

= 〈T3| 1√
2
(|uu〉 − |dd〉)

= 1√
2
(〈uu| − 〈dd|) 1√

2
(|uu〉 − |dd〉)

= 1
2(1− 0− 0 + 1)

= +1
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〈T3|σxτx |T3〉 = 〈T3|σxτx 1√
2
(|uu〉 − |dd〉)

= 〈T3|σx 1√
2
(|ud〉 − |du〉)

= 〈T3| 1√
2
(|dd〉 − |uu〉)

= 1√
2
(〈uu| − 〈dd|) 1√

2
(|dd〉 − |uu〉)

= 1
2(0− 1− 1 + 0)

= −1

〈T3|σyτy |T3〉 = 〈T3|σyτy 1√
2
(|uu〉 − |dd〉)

= 〈T3|σy 1√
2
(i |ud〉+ i |du〉)

= 〈T3| 1√
2
(i2 |dd〉 − i2 |uu〉)

= 1√
2
(〈uu| − 〈dd|) 1√

2
(− |dd〉+ |uu〉)

= 1
2(−0 + 1 + 1− 0)

= +1

In the end, we can summarize the results for Exercises 6.7 and 6.8 as follows

|T1〉 = 1√
2
(|ud〉+ |du〉) |T2〉 = 1√

2
(|uu〉+ |dd〉) |T3〉 = 1√

2
(|uu〉 − |dd〉)

σxτx +1 +1 −1

σyτy +1 −1 +1

σzτz −1 +1 +1

We can repeat the same analysis for the |sing〉 state as it will be useful for
the next question. Repeating the previous steps that we did for |T1〉, |T2〉,
and |T3〉 we get

|sing〉 = 1√
2
(|ud〉 − |du〉)

σxτx -1

σyτy -1

σzτz -1
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Exercise 6.9

Prove that the four vectors |sing〉, |T1〉, |T2〉, and |T3〉 are eigenvectors of
~σ · ~τ . What are their eigenvalues?

Solution

IF |λ〉 is an eigenvector of M then

M |λ〉 = λ |λ〉

where the constant λ is eigenvalue. With this in mind we need to find the
same structure for the operator ~σ ·~τ acting on the state vectors |sing〉, |T1〉,
|T2〉, and |T3〉. Let’s begin with |sing〉

~σ · ~τ |sing〉 = (σxτx + σyτy + σxτx) |sing〉
= σxτx |sing〉+ σyτy |sing〉+ σzτz |sing〉

Using the tables that we derived for the previous exercise for |sing〉 we get

~σ · ~τ |sing〉 = (−1 |sing〉) + (−1 |sing〉) + (−1 |sing〉)
= −3 |sing〉

Doing the same procedure for |T1〉 we get

~σ · ~τ |T1〉 = (σxτx + σyτy + σxτx) |T1〉
= σxτx |T1〉+ σyτy |T1〉+ σzτz |T1〉
= 1 |T1〉+ 1 |T1〉 − 1 |T1〉
= +1 |T1〉

Likewise

~σ · ~τ |T2〉 = (σxτx + σyτy + σxτx) |T2〉
= σxτx |T2〉+ σyτy |T2〉+ σzτz |T2〉
= 1 |T2〉 − 1 |T2〉+ 1 |T2〉
= +1 |T1〉
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And finally

~σ · ~τ |T3〉 = (σxτx + σyτy + σxτx) |T3〉
= σxτx |T3〉+ σyτy |T3〉+ σzτz |T3〉
= −1 |T3〉+ 1 |T3〉+ 1 |T3〉
= +1 |T3〉

Exercise 6.10

A system of two spins has the Hamiltonian

H =
ω

2
~σ · ~τ

What are the possible energies of the system, and what are the eigenvectors
of the Hamiltonian?

Suppose the system starts in the state |uu〉. What is the state at any later
time? answer the same question for initial states of |ud〉, |du〉, and |dd〉.

Solution

In the previous exercise, we computed the eigenvectors of ~σ ·~τ and found an
eigenvalue for each of them . Considering the constant ω

2 multiplying the
observable ~σ · ~τ , we find that the eigenvalues are

λsing = −3ω
2 , λT1 = ω

2 , λT2 = ω
2 , λT3 = ω

2

If the possible energies are captured in the observable H an are ’something
we can measure’ with certain probability, then the eigenvalues of H represent
the possible energies.

For the later part, since we have computed the eigenvectors and know the
that the initial state vector is |uu〉, we have all the ”ingredients” to proceed
with the recipe of subsection 4.13 (pp 124) to study time-dependence

Recipe for a Schröndiger ket:
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1. We already have the Hamiltonian operator H

H =
ω

2
~σ · ~τ

2. The initial state is

|Ψ(0)〉 = |uu〉

3. The eigenvalues and eigenvectors are

H |sing〉 = −3ω

2
|sing〉

H |T1〉 =
ω

2
|T1〉

H |T2〉 =
ω

2
|T2〉

H |T3〉 =
ω

2
|T3〉

4. The coefficients αj(0) are

αsing(0) = 〈sing| |Ψ(0)〉
= 1√

2
(〈ud| − 〈du|)(|uu〉)

= 0

αT1(0) = 〈T1| |Ψ(0)〉
= 1√

2
(〈ud|+ 〈du|)(|uu〉)

= 0

αT2(0) = 〈T2| |Ψ(0)〉
= 1√

2
(〈uu|+ 〈dd|)(|uu〉)

= 1√
2

αT3(0) = 〈T3| |Ψ(0)〉
= 1√

2
(〈uu| − 〈dd|)(|uu〉)

= 1√
2
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5. Now we write the inital state vector in terms of the eigenvectors and
αj(0) coefficients we just computed

|Ψ(0)〉 = αT2(0) |T2〉+ αT3(0) |T3〉

6. Now we introduce the time-dependence coefficients

|Ψ(t)〉 = αT2(t) |T2〉+ αT3(t) |T3〉

7. Now we substitute αj(t) = αj(0)e−
i
~λjt

|Ψ(t)〉 = 1√
2
(e−

i
~λT2 t |T2〉+ e−

i
~λT3 t |T3〉)

= 1√
2
(e−

iω
2~ t |T2〉+ e−

iω
2~ t |T3〉)

We can visualize the amplitudes in Matlab as follows

1 %% Time-dependence and entanglement
2

3 % 1-Spin state vectors to aid 2-spin constructions
4 u = [1;0];
5 d = [0;1];
6

7 % State vector
8 Psi = kron(u,u); % |uu>
9

10 % H's eigenvectors
11 sing = (1/sqrt(2))*(kron(u,d)-kron(d,u));
12 T 1 = (1/sqrt(2))*(kron(u,d)+kron(d,u));
13 T 2 = (1/sqrt(2))*(kron(u,u)+kron(d,d));
14 T 3 = (1/sqrt(2))*(kron(u,u)-kron(d,d));
15

16 % H's eigenvalues (times [omega])
17 lambda s = -3/2;
18 lambda t1 = 1/2;
19 lambda t2 = 1/2;
20 lambda t3 = 1/2;
21

22 % Computing alphas (t=0)
23 alpha s = Psi'*sing; % ex. <Psi | | sing>
24 alpha t1 = Psi'*T 1;
25 alpha t2 = Psi'*T 2;
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26 alpha t3 = Psi'*T 3;
27

28 % Time-dependence equation [tn = t*(omega/hbar)]
29 Psi td = @(tn)(alpha s*exp(-1i*lambda s*tn)*sing+...
30 alpha t1*exp(-1i*lambda t1*tn)*T 1+...
31 alpha t2*exp(-1i*lambda t2*tn)*T 2+...
32 alpha t3*exp(-1i*lambda t3*tn)*T 3);
33

34 % Time period of plot
35 tn = 0:.05:1/((1/2)/(2*pi));
36 amplitudes = zeros(4,length(tn));
37 for j = 1:length(tn)
38 amplitudes(:,j) = Psi td(tn(j));
39 end
40

41 % Plot amplitude in the complex plane and time as 3D
42 plot3(real(amplitudes(:,:))',imag(amplitudes(:,:))',tn')
43 legend({'$ |uu>$','$ |ud>$','$ |du>$','$ |dd>$'},...
44 'Interpreter','latex')
45 title('Time evolution of $\Psi(t)$','Interpreter','latex')
46 xlabel('$\textbf{Real}(\alpha j)$','Interpreter','latex')
47 ylabel('$\textbf{Im}(\alpha j)$','Interpreter','latex')
48 zlabel('$\frac{\omega}{\hbar}t$','Interpreter','latex',...
49 'fontsize',18)

Now we can modify the previous code to produce similar results for:
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Ψ(0) = |ud〉

Ψ(0) = |du〉
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Ψ(0) = |dd〉

Note that in these plots we are adding the eigenvectors and plotting the
amplitudes αj for the resulting base vectors |uu〉, |ud〉, |du〉, and |dd〉. For
example

1√
2

(|T2〉+ |T3〉) = |uu〉

Which we plot as αuu = 1 and αud = αdu = αdd = 0.
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