# Lecture Five Exercise Solutions

#### Exercise 5.1

Any 2 X 2 Hermitian matrix L can be written as a sum of four terms,

$$L = a\sigma_x + b\sigma_y + c\sigma_z + dI$$

Verify this claim.

#### Solution

Any 2X2 Hermitian matrix has the form

$$\begin{pmatrix} r & w \\ w^* & r' \end{pmatrix}$$

where the diagonal elements (r) are real and the other two are complex conjugates.

$$L = a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + c \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + d \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} r & w \\ w^* & r' \end{pmatrix} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} + \begin{pmatrix} 0 & -bi \\ bi & 0 \end{pmatrix} + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} + \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$$
$$\begin{pmatrix} r & w \\ w^* & r' \end{pmatrix} = \begin{pmatrix} d+c & a-bi \\ a+bi & d-c \end{pmatrix}$$

We can allow c and d to be real numbers specifying any arbitrary real numbers r and r', and a and b to be real numbers that specify any complex number w and its complex conjugate  $w^*$ .

### Exercise 5.2

- 1) Show that  $\Delta A^2 = \langle \bar{A^2} \rangle$  and  $\Delta B^2 = \langle \bar{B^2} \rangle$ .
- 2) Show that  $[\bar{A}, \bar{B}] = [A, B]$ .

3) Using these relations, show that

$$\Delta A \Delta B \geq \frac{1}{2} |\langle \Psi | [A,B] | \Psi \rangle|$$

## Solution

1) Section 5.4 shows us how  $\Delta A^2 = \langle \bar{A}^2 \rangle$ . We define the operator  $\bar{A}$  to be

$$\bar{A} = A - \langle A \rangle$$

with eigenvalues

$$\bar{a} = a - \langle A \rangle$$

The standard deviation of A is defined by

$$(\Delta A)^2 = \sum_a \bar{a}^2 P(a)$$

$$= \sum_a (a - \langle A \rangle)^2 P(a)$$

$$= \langle \Psi | \bar{A}^2 | \Psi \rangle$$

$$= \langle \bar{A}^2 \rangle$$

We can show  $\Delta B^2 = \langle \bar{B^2} \rangle$  with the same approach.

2) We define  $\bar{A}=A-\langle A\rangle$  and  $\bar{B}=B-\langle B\rangle$  and substitute these into the given equality.

$$\begin{split} [\bar{A}, \bar{B}] &= [(A - \langle A \rangle), (B - \langle B \rangle)] \\ &= (A - \langle A \rangle)(B - \langle B \rangle) - (B - \langle B \rangle)(A - \langle A \rangle) \\ &= AB - \langle A \rangle B - A \langle B \rangle + \langle A \rangle \langle B \rangle - BA + \langle B \rangle A + B \langle A \rangle - \langle B \rangle \langle A \rangle \\ &= AB - BA \\ &= [A, B] \end{split}$$

3) Replacing A and B with  $\bar{A}$  and  $\bar{B}$  in Equation (5.12), we have

$$\begin{split} 2\sqrt{\langle\bar{A}^2\rangle\langle\bar{B}^2\rangle} &\geq |\langle\Psi|[\bar{A},\bar{B}]|\Psi\rangle| \\ 2\sqrt{\Delta A^2\Delta B^2} &\geq |\langle\Psi|[A,B]|\Psi\rangle| \\ \Delta A^2\Delta B^2 &\geq \frac{1}{2}|\langle\Psi|[A,B]|\Psi\rangle| \end{split}$$