Lecture Four Exercise Solutions

Exercise 4.1

Prove that if U is unitary, and if |A) and |B) are any two state-vectors, then
the inner product of U|A) and U|B) is the same as the inner product of | A)
and |B) .

Solution

A unitary operator is one that satisfies the relationship UTU = I. Applying
the inner product of state-vectors |A) and |B), we have

63}
(A|B) = (1 a2 a3) | B2 | = a1f1 + azfa +asfs
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(A| UTU|B) = (A| I|B) = (A| B) from the definition provided above.

Exercise 4.2

Prove that if M and L are both Hermitian, ¢[M,L] is also Hermitian. Note
that the 4 is important. The commutator is, by itself, not Hermitian.
Solution

From the definition of Hermitian, we have M = MT = (MT)* and L = LT =
(LT)*. To prove i[M, L] is Hermitian, we must show i[M, L] = (i[M, L])T.

(i[M, L))}

i[ML — LM])!

(i[ML — LM))T]*

(iML —iLM)T]*

(GML)T — GiLM)T]*
i(LTMT))* = (i((MTLT))*]

= (L") (MT)*) +i((MT)*(L")")
= i(MT)(LT) —i(Lh)(MT)

= i[(MT)(LT) = (LT (MT)]
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Exercise 4.3

Go back to the definition of Poisson brackets in Volume 1 and check that
the identification in Eq. 4.21 is dimensionally consistent. Show that without
factor A, it would not be.

Solution

Equation (4.21) gives us the formal identification between commutators and
Poisson brackets: [F,G] < ih{F,G}
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where ¢(space) is measured in m and p (momentum) is measured in kg-m/s.

Rewriting this relationship solely in terms of units, we have
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The units for i = 5, are kg -m?*/s so that
™

ih{F,G} =

kg - m? <F Gs G Fs

s = = FG—GF = [F,G] as desired.
mkg-m mkg-m

S

Exercise 4.4

Verify the commutation relations of Eqs 4.26.
(02, 0y] = 2i0,

[0y, 0] = 2i0,

[02,04] = 2ioy



Solution

(02, 0y] = 020y — 0yO, =



Exercise 4.5

hw
Take any unit 3-vector @ and form the operator H = —o¢-7i. Find the energy

eigenvalues and eigenvectors by solving the time-independent Schrodinger
equation. Recall that Eq. 3.23 gives o, - 77 in component form.

Solution

Recall that in Exercise 3.4, we solved for the eigenfunctions and eigenvalues
of o, defined as
_ Ny (ne — iny)
op = .
(ng + iny) —n,

whose eigenvalues and eigenvectors are A\ = 1 with |A;) = ( ) ) and
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The given Hamiltonian can be rewritten as H = — Ons S0 that the eigen-

hw
values of H are 17 and the eigenvectors of H remain the same as those of
On.-

Exercise 4.6

Carry out the Schrodinger Ket recipe for a single spin. The Hamiltonian is

hw
H = 5 0z and the final observable is o,. The initial state is given as |u) .
After time ¢, an experiment is done to measure o,. What are the possible
outcomes and what are the probabilities for those outcomes?

Solution

Recipe for a Schrodinger Ket:

1. The Hamiltonian is given as H = - =

1
0
3. The eigenvalues and eigenvectors of H differ from those of o, by a real

2. The initial state |¢(0)) is 1|u) + 0 |d) = |u) =

huw
constant -5 so that we have



hw 1
E1—7:>‘E1>— <0>

hw 0
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4. The initial coefficients a;(0) of |¢)(0)) are

(0) = (B0 = (1 0) (§) =1
a(0) = (] 60 = 0 1) (o) =0

5. Rewriting in terms of the eigenvectors of H

1 0 1

w0 =S a0 12) =1 (3) +0(3) = (o)
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6, 7. Rewrite the state vector [¢(t)) in terms of the initial coefficients.

(1) =) ai(t)|E))

J
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Now that we have |¢(t)), we can predict the probabilities for each possible
outcome of an experiment as a function of time. Measuring o, gives us
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