Lecture Four Exercise Solutions

Exercise 4.1

Prove that if U is unitary, and if $|A\rangle$ and $|B\rangle$ are any two state-vectors, then the inner product of $\mathrm{U}|A\rangle$ and $\mathrm{U}|B\rangle$ is the same as the inner product of $|A\rangle$ and $|B\rangle$.

Solution

A unitary operator is one that satisfies the relationship $U^{\dagger} U=I$. Applying the inner product of state-vectors $|A\rangle$ and $|B\rangle$, we have
$\langle A \mid B\rangle=\left(\begin{array}{lll}\alpha_{1} & \alpha_{2} & \alpha_{3}\end{array}\right)\left(\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}$
$\langle A| U^{\dagger} U|B\rangle=\langle A| I|B\rangle=\langle A \mid B\rangle$ from the definition provided above.

Exercise 4.2

Prove that if M and L are both Hermitian, $i[\mathrm{M}, \mathrm{L}]$ is also Hermitian. Note that the i is important. The commutator is, by itself, not Hermitian.

Solution

From the definition of Hermitian, we have $M=M^{\dagger}=\left(M^{T}\right)^{*}$ and $L=L^{\dagger}=$ $\left(L^{T}\right)^{*}$. To prove $i[M, L]$ is Hermitian, we must show $i[M, L]=(i[M, L])^{\dagger}$.

$$
\begin{aligned}
(i[M, L])^{\dagger} & =(i[M L-L M])^{\dagger} \\
& =\left[(i[M L-L M])^{T}\right]^{*} \\
& =\left[(i M L-i L M)^{T}\right]^{*} \\
& =\left[(i M L)^{T}-(i L M)^{T}\right]^{*} \\
& \left.=\left(i\left(L^{T} M^{T}\right)\right)^{*}-\left(i\left(M^{T} L^{T}\right)\right)^{*}\right] \\
& =-i\left(\left(L^{T}\right)^{*}\left(M^{T}\right)^{*}\right)+i\left(\left(M^{T}\right)^{*}\left(L^{T}\right)^{*}\right) \\
& =i\left(M^{\dagger}\right)\left(L^{\dagger}\right)-i\left(L^{\dagger}\right)\left(M^{\dagger}\right) \\
& =i\left[\left(M^{\dagger}\right)\left(L^{\dagger}\right)-\left(L^{\dagger}\right)\left(M^{\dagger}\right)\right] \\
& =i[M L-L M] \\
& =i[M, L]
\end{aligned}
$$

Exercise 4.3

Go back to the definition of Poisson brackets in Volume 1 and check that the identification in Eq. 4.21 is dimensionally consistent. Show that without factor \hbar, it would not be.

Solution

Equation (4.21) gives us the formal identification between commutators and Poisson brackets: $[\mathrm{F}, \mathrm{G}] \Longleftrightarrow i \hbar\{F, G\}$

$$
\dot{F}=\frac{\partial}{\partial t}(F)=\{F, G\}=\sum\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial G}{\partial q_{i}} \frac{\partial F}{\partial p_{i}}\right)
$$

where q (space) is measured in m and p (momentum) is measured in $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$. Rewriting this relationship solely in terms of units, we have

$$
\{F, G\}=\left(\frac{F}{m} \frac{G}{\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}-\frac{G}{\mathrm{~m}} \frac{\mathrm{~F}}{\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}\right)=\left(\frac{F}{m} \frac{G s}{\mathrm{~kg} \cdot \mathrm{~m}}-\frac{G}{m} \frac{F s}{\mathrm{~kg} \cdot \mathrm{~m}}\right)
$$

The units for $\hbar=\frac{h}{2 \pi}$ are $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$ so that
$i \hbar\{F, G\}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}}\left(\frac{F}{\mathrm{~m}} \frac{\mathrm{Gs}}{\mathrm{kg} \cdot \mathrm{m}}-\frac{G}{\mathrm{~m}} \frac{\mathrm{Fs}}{\mathrm{kg} \cdot \mathrm{m}}\right)=F G-G F=[F, G]$ as desired.

Exercise 4.4

Verify the commutation relations of Eqs 4.26.

$$
\begin{aligned}
& {\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}} \\
& {\left[\sigma_{y}, \sigma_{z}\right]=2 i \sigma_{x}} \\
& {\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y}}
\end{aligned}
$$

Solution

$$
\begin{aligned}
{\left[\sigma_{x}, \sigma_{y}\right]=\sigma_{x} \sigma_{y}-\sigma_{y} \sigma_{x} } & =\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)-\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 i & 0 \\
0 & -2 i
\end{array}\right) \\
& =2 i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =2 i \sigma_{z} \\
{\left[\sigma_{y}, \sigma_{z}\right]=\sigma_{y} \sigma_{z}-\sigma_{z} \sigma_{y} } & =\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 2 i \\
2 i & 0
\end{array}\right) \\
& =2 i\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =2 i \sigma_{x}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\sigma_{z}, \sigma_{x}\right]=\sigma_{z} \sigma_{x}-\sigma_{x} \sigma_{z} } & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) \\
& =2\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =2\left(\begin{array}{cc}
0 & -i^{2} \\
i^{2} & 0
\end{array}\right) \\
& =2 i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =2 i \sigma_{y}
\end{aligned}
$$

Exercise 4.5

Take any unit 3 -vector \vec{n} and form the operator $H=\frac{\hbar \omega}{2} \sigma \cdot \vec{n}$. Find the energy eigenvalues and eigenvectors by solving the time-independent Schrodinger equation. Recall that Eq. 3.23 gives $\sigma_{n} \cdot \vec{n}$ in component form.

Solution

Recall that in Exercise 3.4, we solved for the eigenfunctions and eigenvalues of σ_{n}, defined as

$$
\sigma_{n}=\left(\begin{array}{cc}
n_{z} & \left(n_{x}-i n_{y}\right) \\
\left(n_{x}+i n_{y}\right) & -n_{z}
\end{array}\right)
$$

whose eigenvalues and eigenvectors are $\lambda_{1}=1$ with $\left|\lambda_{1}\right\rangle=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}$ and $\lambda_{2}=-1$ with $\left|\lambda_{2}\right\rangle\binom{\sin \frac{\theta}{2}}{e^{-i \phi} \cos \frac{\theta}{2}}$.
The given Hamiltonian can be rewritten as $H=\frac{\hbar \omega}{2} \sigma_{n}$, so that the eigenvalues of H are $\pm \frac{\hbar \omega}{2}$ and the eigenvectors of H remain the same as those of σ_{n}.

Exercise 4.6

Carry out the Schrodinger Ket recipe for a single spin. The Hamiltonian is $H=\frac{\hbar \omega}{2} \sigma_{z}$ and the final observable is σ_{x}. The initial state is given as $|u\rangle$. After time t, an experiment is done to measure σ_{y}. What are the possible outcomes and what are the probabilities for those outcomes?

Solution

Recipe for a Schrodinger Ket:

1. The Hamiltonian is given as $H=\frac{\hbar \omega}{2} \sigma_{z}$.
2. The initial state $|\psi(0)\rangle$ is $1|u\rangle+0|d\rangle=|u\rangle=\binom{1}{0}$
3. The eigenvalues and eigenvectors of H differ from those of σ_{z} by a real constant $\frac{\hbar \omega}{2}$ so that we have

$$
\begin{aligned}
& E_{1}=\frac{\hbar \omega}{2} \Rightarrow\left|E_{1}\right\rangle=\binom{1}{0} \\
& E_{2}=\frac{\hbar \omega}{2} \Rightarrow\left|E_{2}\right\rangle=\binom{0}{1}
\end{aligned}
$$

4. The initial coefficients $a_{j}(0)$ of $|\psi(0)\rangle$ are

$$
\begin{aligned}
& a_{1}(0)=\left\langle E_{1} \mid \psi(0)\right\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 \\
& a_{2}(0)=\left\langle E_{2} \mid \psi(0)\right\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{0}=0
\end{aligned}
$$

5. Rewriting in terms of the eigenvectors of H

$$
|\psi(0)\rangle=\sum_{j} a_{j}(0)\left|E_{j}\right\rangle=1\binom{1}{0}+0\binom{0}{1}=\binom{1}{0}
$$

6, 7. Rewrite the state vector $|\psi(t)\rangle$ in terms of the initial coefficients.

$$
\begin{aligned}
|\psi(t)\rangle & =\sum_{j} a_{j}(t)\left|E_{j}\right\rangle \\
& =\sum_{j} a_{j}(0) e^{-i / h E_{j} t}\left|E_{j}\right\rangle \\
& =a_{1}(0) e^{-i / h E_{1} t}\left|E_{1}\right\rangle+a_{2}(0) e^{-i / h E_{2} t}\left|E_{2}\right\rangle \\
& =1 e^{-i w t / 2}\binom{1}{0} \\
& =\binom{e^{-i w t / 2}}{0}
\end{aligned}
$$

Now that we have $|\psi(t)\rangle$, we can predict the probabilities for each possible outcome of an experiment as a function of time. Measuring σ_{y} gives us

$$
\begin{aligned}
P_{+1}(t) & =\left\langle\lambda_{1} \mid \psi(t)\right\rangle\left\langle\psi(t) \mid \lambda_{1}\right\rangle \\
& =\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}}
\end{array}\right)\binom{e^{-i w t / 2}}{0}\left(\begin{array}{ll}
e^{i w t / 2} & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}} \\
& =\left(\frac{1}{\sqrt{2}} e^{-i w t / 2}\right)\left(\frac{1}{\sqrt{2}} e^{i w t / 2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P_{-1}(t) & =\left\langle\lambda_{2} \mid \psi(t)\right\rangle\left\langle\psi(t) \mid \lambda_{2}\right\rangle \\
& =\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\binom{e^{-i w t / 2}}{0}\left(\begin{array}{ll}
e^{i w t / 2} & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{-i}{\sqrt{2}}} \\
& =\left(\frac{1}{\sqrt{2}} e^{-i w t / 2}\right)\left(\frac{1}{\sqrt{2}} e^{i w t / 2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

