
Lecture Four Exercise Solutions

Exercise 4.1

Prove that if U is unitary, and if |A〉 and |B〉 are any two state-vectors, then
the inner product of U|A〉 and U|B〉 is the same as the inner product of |A〉
and |B〉 .

Solution

A unitary operator is one that satisfies the relationship U †U = I. Applying
the inner product of state-vectors |A〉 and |B〉 , we have

〈A| B〉 =
(
α1 α2 α3

)β1β2
β3

 = α1β1 + α2β2 + α3β3

〈
A
∣∣ U †U |B〉 = 〈A| I|B〉 = 〈A| B〉 from the definition provided above.

Exercise 4.2

Prove that if M and L are both Hermitian, i[M,L] is also Hermitian. Note
that the i is important. The commutator is, by itself, not Hermitian.

Solution

From the definition of Hermitian, we have M = M † = (MT )∗ and L = L† =
(LT )∗. To prove i[M,L] is Hermitian, we must show i[M,L] = (i[M,L])†.

(i[M,L])† = (i[ML− LM ])†

= [(i[ML− LM ])T ]∗

= [(iML− iLM)T ]∗

= [(iML)T − (iLM)T ]∗

= (i(LTMT ))∗ − (i(MTLT ))∗]

= −i((LT )∗(MT )∗) + i((MT )∗(LT )∗)

= i(M †)(L†)− i(L†)(M †)
= i[(M †)(L†)− (L†)(M †)]

= i[ML− LM ]

= i[M,L]
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Exercise 4.3

Go back to the definition of Poisson brackets in Volume 1 and check that
the identification in Eq. 4.21 is dimensionally consistent. Show that without
factor ~, it would not be.

Solution

Equation (4.21) gives us the formal identification between commutators and
Poisson brackets: [F,G] ⇐⇒ i~{F,G}

Ḟ =
∂

∂t
(F ) = {F,G} =

∑(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
where q(space) is measured in m and p (momentum) is measured in kg·m/s.

Rewriting this relationship solely in terms of units, we have

{F,G} =

(
F

m

G

kg ·m/s
− G

m

F

kg ·m/s

)
=

(
F

m

Gs

kg ·m
− G

m

Fs

kg ·m

)

The units for ~ =
h

2π
are kg ·m2/s so that

i~{F,G} =
kg ·m2

s

(
F

m

Gs

kg ·m
− G

m

Fs

kg ·m

)
= FG−GF = [F,G] as desired.

Exercise 4.4

Verify the commutation relations of Eqs 4.26.

[σx, σy] = 2iσz

[σy, σz] = 2iσx

[σz, σx] = 2iσy
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Solution

[σx, σy] = σxσy − σyσx =

(
0 1
1 0

)(
0 −i
−1 0

)
−
(

0 −i
−1 0

)(
0 1
1 0

)
=

(
i 0
0 −i

)
−
(
−i 0
0 i

)
=

(
2i 0
0 −2i

)
= 2i

(
1 0
0 −1

)
= 2iσz

[σy, σz] = σyσz − σzσy =

(
0 −i
−i 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 −i
−i 0

)
=

(
0 i
i 0

)
−
(

0 −i
−i 0

)
=

(
0 2i
2i 0

)
= 2i

(
0 1
1 0

)
= 2iσx

[σz, σx] = σzσx − σxσz =

(
1 0
0 −1

)(
0 1
1 0

)
−
(

0 1
1 0

)(
1 0
0 −1

)
=

(
0 1
−1 0

)
−
(

0 −1
−1 0

)
=

(
0 2
−2 0

)
= 2

(
0 1
−1 0

)
= 2

(
0 −i2
i2 0

)
= 2i

(
0 −i
i 0

)
= 2iσy
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Exercise 4.5

Take any unit 3-vector ~n and form the operator H =
~ω
2
σ·~n. Find the energy

eigenvalues and eigenvectors by solving the time-independent Schrodinger
equation. Recall that Eq. 3.23 gives σn · ~n in component form.

Solution

Recall that in Exercise 3.4, we solved for the eigenfunctions and eigenvalues
of σn, defined as

σn =

(
nz (nx − iny)

(nx + iny) −nz

)

whose eigenvalues and eigenvectors are λ1 = 1 with |λ1〉 =

(
cos θ2
eiφsin θ2

)
and

λ2 = −1 with |λ2〉
(

sin θ2
e−iφcos θ2

)
.

The given Hamiltonian can be rewritten as H =
~ω
2
σn, so that the eigen-

values of H are ±~ω
2

and the eigenvectors of H remain the same as those of
σn.

Exercise 4.6

Carry out the Schrodinger Ket recipe for a single spin. The Hamiltonian is

H =
~ω
2
σz and the final observable is σx. The initial state is given as |u〉 .

After time t, an experiment is done to measure σy. What are the possible
outcomes and what are the probabilities for those outcomes?

Solution

Recipe for a Schrodinger Ket:

1. The Hamiltonian is given as H =
~ω
2
σz.

2. The initial state |ψ(0)〉 is 1|u〉 + 0 |d〉 = |u〉 =

(
1
0

)
3. The eigenvalues and eigenvectors of H differ from those of σz by a real

constant
~ω
2

so that we have
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E1 =
~ω
2
⇒ |E1〉 =

(
1
0

)

E2 =
~ω
2
⇒ |E2〉 =

(
0
1

)
4. The initial coefficients aj(0) of |ψ(0)〉 are

a1(0) = 〈E1| ψ(0)〉 =
(
1 0

)(1
0

)
= 1

a2(0) = 〈E2| ψ(0)〉 =
(
0 1

)(1
0

)
= 0

5. Rewriting in terms of the eigenvectors of H

|ψ(0)〉 =
∑
j

aj(0) |Ej〉 = 1

(
1
0

)
+ 0

(
0
1

)
=

(
1
0

)

6, 7. Rewrite the state vector |ψ(t)〉 in terms of the initial coefficients.

|ψ(t)〉 =
∑
j

aj(t) |Ej〉

=
∑
j

aj(0)e−i/hEjt |Ej〉

= a1(0)e−i/hE1t |E1〉+ a2(0)e−i/hE2t |E2〉

= 1e−iwt/2
(

1
0

)
=

(
e−iwt/2

0

)

Now that we have |ψ(t)〉 , we can predict the probabilities for each possible
outcome of an experiment as a function of time. Measuring σy gives us
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P+1(t) = 〈λ1| ψ(t)〉 〈ψ(t)| λ1〉

=
(

1√
2

−i√
2

)(
e−iwt/2

0

)(
eiwt/2 0

)( 1√
2
i√
2

)
= (

1√
2
e−iwt/2)(

1√
2
eiwt/2)

=
1

2

P−1(t) = 〈λ2| ψ(t)〉 〈ψ(t)| λ2〉

=
(

1√
2

i√
2

)(
e−iwt/2

0

)(
eiwt/2 0

)( 1√
2
−i√
2

)
= (

1√
2
e−iwt/2)(

1√
2
eiwt/2)

=
1

2
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