Lecture Three Exercise Solutions

Exercise 3.1

Prove the following: If a vector space is N-dimensional, an orthonormal basis of N vectors can be constructed from the eigenvectors of a Hermitian operator.

Solution

Let V^{N} be an N dimensional vector space and L be a Hermitian operator in V^{N}. Then L can be represented by an $\mathrm{N} \times \mathrm{N}$ matrix and we can solve the basic eigenvector equation for a non-zero vector $|\lambda\rangle$ such that $L|\lambda\rangle=\lambda|\lambda\rangle$. We know $\operatorname{det}(A-\lambda I)=0$ is an $n^{\text {th }}$ degree polynomial, which can be solved for N eigenvalues and N corresponding eigenvectors. These eigenvectors will be orthogonal (or can be chosen to be orthogonal) and form a complete set (from the fundamental theorem). This means in an N dimensional vector space, there can always be found N mutually orthogonal eigenvectors of an N_{xN} Hermitian operator, which can be normalized to form an orthonormal basis of V^{N}.

Exercise 3.2

Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Solution

$$
\begin{gathered}
\left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)\binom{1}{0}=\binom{1}{0} \Rightarrow \begin{array}{l}
\left(\sigma_{z}\right)_{11}=1 \\
\left(\sigma_{z}\right)_{21}=0
\end{array} \\
\left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)\binom{0}{1}=-\binom{0}{1} \Rightarrow \begin{array}{c}
\left(\sigma_{z}\right)_{12}=0 \\
\left(\sigma_{z}\right)_{22}=-1
\end{array} \\
\left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

We know this solution is unique because the determinant of matrix (3.16) is non-zero.

Exercise 3.3

Calculate the eigenvectors and eigenvalues of σ_{n}.

Solution

We are asked to solve the eigenvector equation of the form $\sigma_{n}|\lambda\rangle=\lambda|\lambda\rangle$

$$
\sigma_{n}|\lambda\rangle=\lambda|\lambda\rangle \rightarrow\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\binom{\cos \alpha}{\sin \alpha}=\lambda\binom{\cos \alpha}{\sin \alpha}
$$

Expanding these products, we have

$$
\begin{aligned}
& \cos \theta \cos \alpha+\sin \theta \sin \alpha=\lambda \cos \alpha \Rightarrow \cos (\theta-\alpha)=\lambda \cos \alpha \\
& \sin \theta \cos \alpha-\cos \theta \sin \alpha=\lambda \sin \alpha \Rightarrow \sin (\theta-\alpha)=\lambda \sin \alpha
\end{aligned}
$$

Solving both equations in terms of λ :

$$
\begin{gathered}
\lambda=\frac{\cos (\theta-\alpha)}{\cos \alpha} \\
\lambda=\frac{\sin (\theta-\alpha)}{\sin \alpha} \\
\frac{\cos (\theta-\alpha)}{\cos \alpha}=\frac{\sin (\theta-\alpha)}{\sin \alpha} \\
\sin \alpha \cos (\theta-\alpha)=\cos \alpha \sin (\theta-\alpha) \\
\sin \alpha \cos (\theta-\alpha)-\cos \alpha \sin (\theta-\alpha)=0 \\
\sin (\alpha-(\theta-\alpha))=0 \\
\sin (2 \alpha-\theta)=0
\end{gathered}
$$

Solving for α in terms of θ gives us $\alpha=\theta / 2$ or $\alpha=\theta / 2+\pi / 2$ and the following eigenvalues.

$$
\begin{gathered}
\lambda_{1}=\cos \left(\theta-\frac{\theta}{2}\right) / \cos \frac{\theta}{2}=1 \\
\lambda_{2}=\cos \left(\theta-\theta-\frac{\theta}{2}\right) / \cos \frac{\pi}{2}+\frac{\theta}{2}=-1
\end{gathered}
$$

$$
\begin{aligned}
& \text { For } \lambda_{1}=1,\left|\lambda_{1}\right\rangle=\binom{\cos \alpha_{1}}{\sin \alpha_{1}}=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \\
& \text { For } \lambda_{2}=-1,\left|\lambda_{2}\right\rangle=\binom{\cos \alpha_{2}}{\sin \alpha_{2}}=\binom{\cos \frac{\pi}{2}+\frac{\theta}{2}}{\sin \frac{\pi}{2}+\frac{\theta}{2}}=\binom{-\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)}
\end{aligned}
$$

Exercise 3.4

Let $n_{z}=\cos \theta, n_{x}=\sin \theta \cos \phi$ and $n_{y}=\sin \theta \sin \phi$. Compute the eigenvalues and eigenvectors for the matrix of Eq. 3.23.

Solution

$$
\sigma_{n}=\left(\begin{array}{cc}
n_{z} & \left(n_{x}-i n_{y}\right) \\
\left(n_{x}+i n_{y}\right) & -n_{z}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \cos \phi-i \sin \theta \sin \phi \\
\sin \theta \cos \phi+i \sin \theta \sin \phi & -\cos \theta
\end{array}\right)
$$

Notice we can rewrite the entries of σ_{n} in a more efficient form.

$$
\sigma_{n}=\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right)
$$

We can assume the eigenvectors are of similar form as those of Exercise 3.3 (with an arbitrary phase change) and we are solving the eigenvector equation

$$
\begin{gathered}
\sigma_{n}|\lambda\rangle=\lambda|\lambda\rangle \rightarrow\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)\binom{\cos \alpha}{\sin \alpha}=\lambda\binom{\cos \alpha}{\sin \alpha} \\
\cos \theta \cos \alpha+e^{-i \phi} \sin \theta \sin \alpha=\lambda \cos \alpha \\
e^{i \phi} \sin \theta \cos \alpha-\cos \theta \sin \alpha=\lambda \sin \alpha
\end{gathered}
$$

We can solve for $e^{i \phi}$ in both equations.

$$
\begin{gathered}
e^{i \phi}=\frac{\sin \theta \sin \alpha}{\lambda \cos \alpha-\cos \theta \cos \alpha} \\
e^{i \phi}=\frac{\lambda \sin \alpha+\cos \theta \sin \alpha}{\sin \theta \cos \alpha} \\
\frac{\sin \theta \sin \alpha}{\lambda \cos \alpha-\cos \theta \cos \alpha}=\frac{\lambda \sin \alpha+\cos \theta \sin \alpha}{\sin \theta \cos \alpha}
\end{gathered}
$$

Solving for λ gives us

$$
\sin ^{\theta}+\cos ^{2} \theta=\lambda^{2} \Rightarrow \lambda= \pm 1
$$

To find the eigenvectors of the matrix, we must solve the following for the correct coefficients.

$$
\begin{gathered}
\sigma_{n}|\lambda\rangle=\lambda|\lambda\rangle \rightarrow\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)\binom{a \cos \frac{\theta}{2}}{b \sin \frac{\theta}{2}}=1\binom{a \cos \frac{\theta}{2}}{b \sin \frac{\theta}{2}} \\
a \cos \theta \cos \frac{\theta}{2}+b e^{-i \phi} \sin \theta \sin \frac{\theta}{2}=a \cos \frac{\theta}{2} \\
a e^{i \phi} \sin \theta \cos \frac{\theta}{2}-b \cos \theta \sin \frac{\theta}{2}=b \sin \frac{\theta}{2}
\end{gathered}
$$

After dividing the top equation by a, we have

$$
\cos \theta \cos \frac{\theta}{2}+\frac{b}{a} e^{-i \phi} \sin \theta \sin \frac{\theta}{2}=\cos \frac{\theta}{2}
$$

Let $b=e^{i \phi}$ and $a=1$ so that the $e^{-i \phi}$ term cancels accordingly. We can simplify again using the additive trig identity to obtain the equations from Exercise 3.3 and see that for $\lambda_{1}=1$,

$$
\left|\lambda_{1}\right\rangle=\binom{a \cos \frac{\theta}{2}}{b \sin \frac{\theta}{2}}=\binom{1 \cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}
$$

Similarly, for $\lambda_{2}=-1$, we can apply a similar form of reasoning and find coefficients to the eigenvector from exercise 3.3 so that $\left|\lambda_{2}\right\rangle$ is orthogonal to $\left|\lambda_{1}\right\rangle$.

$$
\begin{gathered}
\left(\cos \frac{\theta}{2} \quad e^{i \phi} \sin \frac{\theta}{2}\right)\binom{c \sin \frac{\theta}{2}}{-d \cos \frac{\theta}{2}}=0 \\
\cos \frac{\theta}{2} \operatorname{csin} \frac{\theta}{2}-e^{i \phi} \sin \frac{\theta}{2} d \cos \frac{\theta}{2}=0
\end{gathered}
$$

Notice that $\mathrm{c}=1$ and $\mathrm{d}=e^{-i \phi}$ are solutions to the equations.

$$
\text { For } \lambda_{2}=-1,\left|\lambda_{2}\right\rangle=\binom{c \sin \frac{\theta}{2}}{-d \cos \frac{\theta}{2}}=\binom{1 \sin \frac{\theta}{2}}{e^{-i \phi} \cos \frac{\theta}{2}}
$$

Exercise 3.5

Suppose that a spin is prepared so that $\sigma_{m}=+1$. The apparatus is then rotated to the \hat{n} direction and σ_{n} is measured. What is the probability that the result is +1 ?

Solution

From exercise 3.4, we know the eigenvector of an arbitrary n axis is given by

$$
\begin{gathered}
|+\lambda\rangle=\binom{1 \cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}} \\
P(+n)=\|<+m \mid+n>\|^{2}=\left\|\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1 \cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}\right\|^{2}=\cos ^{2} \frac{\theta}{2}
\end{gathered}
$$

