
Lecture Three Exercise Solutions

Exercise 3.1

Prove the following: If a vector space is N -dimensional, an orthonormal
basis of N vectors can be constructed from the eigenvectors of a Hermitian
operator.

Solution

Let V N be an N dimensional vector space and L be a Hermitian operator
in V N . Then L can be represented by an N x N matrix and we can solve the
basic eigenvector equation for a non-zero vector |λ〉 such that L|λ〉 = λ |λ〉 .
We know det(A− λI) = 0 is an nth degree polynomial, which can be solved
for N eigenvalues and N corresponding eigenvectors. These eigenvectors will
be orthogonal (or can be chosen to be orthogonal) and form a complete set
(from the fundamental theorem). This means in an N dimensional vector
space, there can always be found N mutually orthogonal eigenvectors of an
NxN Hermitian operator, which can be normalized to form an orthonormal
basis of V N .

Exercise 3.2

Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Solution

(
(σz)11 (σz)12
(σz)21 (σz)22

)(
1
0

)
=

(
1
0

)
⇒ (σz)11 = 1

(σz)21 = 0

(
(σz)11 (σz)12
(σz)21 (σz)22

)(
0
1

)
= −

(
0
1

)
⇒ (σz)12 = 0

(σz)22 = −1

(
(σz)11 (σz)12
(σz)21 (σz)22

)
=

(
1 0
0 −1

)
We know this solution is unique because the determinant of matrix

(3.16) is non-zero.
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Exercise 3.3

Calculate the eigenvectors and eigenvalues of σn.

Solution

We are asked to solve the eigenvector equation of the form σn |λ〉 = λ |λ〉

σn |λ〉 = λ |λ〉 →
(
cosθ sinθ
sinθ −cosθ

)(
cosα
sinα

)
= λ

(
cosα
sinα

)
Expanding these products, we have

cosθ cosα+ sinθ sinα = λ cosα⇒ cos(θ − α) = λ cosα

sinθ cosα− cosθ sinα = λ sinα⇒ sin(θ − α) = λ sinα

Solving both equations in terms of λ :

λ =
cos(θ − α)

cosα

λ =
sin(θ − α)

sinα

cos(θ − α)

cosα
=
sin(θ − α)

sinα

sinα cos(θ − α) = cosα sin(θ − α)

sinα cos(θ − α)− cosα sin(θ − α) = 0

sin(α− (θ − α)) = 0

sin(2α− θ) = 0

Solving for α in terms of θ gives us α = θ/2 or α = θ/2 + π/2 and the
following eigenvalues.

λ1 = cos(θ − θ

2
)/cos

θ

2
= 1

λ2 = cos(θ − θ − θ

2
)/cos

π

2
+
θ

2
= −1
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For λ1 = 1, |λ1〉 =

(
cosα1

sinα1

)
=

(
cos θ2
sin θ2

)

For λ2 = −1, |λ2〉 =

(
cosα2

sinα2

)
=

(
cosπ2 + θ

2

sinπ2 + θ
2

)
=

(
−sin( θ2)

cos( θ2)

)

Exercise 3.4

Let nz = cosθ, nx = sinθ cosφ and ny = sinθ sinφ. Compute the eigenvalues
and eigenvectors for the matrix of Eq. 3.23.

Solution

σn =

(
nz (nx − iny)

(nx + iny) −nz

)
=

(
cosθ sinθcosφ− isinθsinφ

sinθcosφ+ isinθsinφ −cosθ

)
Notice we can rewrite the entries of σn in a more efficient form.

σn =

(
cosθ sinθe−iφ

sinθeiφ −cosθ

)
We can assume the eigenvectors are of similar form as those of Exercise

3.3 (with an arbitrary phase change) and we are solving the eigenvector
equation

σn |λ〉 = λ |λ〉 →
(

cosθ e−iφsinθ
eiφsinθ −cosθ

)(
cosα
sinα

)
= λ

(
cosα
sinα

)

cosθ cosα+ e−iφsinθ sinα = λ cosα

eiφsinθ cosα− cosθ sinα = λ sinα

We can solve for eiφ in both equations.

eiφ =
sinθsinα

λcosα− cosθcosα

eiφ =
λsinα+ cosθsinα

sinθcosα

sinθsinα

λcosα− cosθcosα
=
λsinα+ cosθsinα

sinθcosα
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Solving for λ gives us

sinθ + cos2θ = λ2 ⇒ λ = ±1

To find the eigenvectors of the matrix, we must solve the following for
the correct coefficients.

σn |λ〉 = λ |λ〉 →
(

cosθ e−iφsinθ
eiφsinθ −cosθ

)(
a cos θ2
b sin θ2

)
= 1

(
a cos θ2
b sin θ2

)

a cosθcos
θ

2
+ b e−iφsinθ sin

θ

2
= a cos

θ

2

a eiφsinθ cos
θ

2
− b cosθ sinθ

2
= b sin

θ

2

After dividing the top equation by a, we have

cosθ cos
θ

2
+
b

a
e−iφsinθ sin

θ

2
= cos

θ

2

Let b = eiφ and a = 1 so that the e−iφ term cancels accordingly. We
can simplify again using the additive trig identity to obtain the equations
from Exercise 3.3 and see that for λ1 = 1,

|λ1〉 =

(
acos θ2
bsin θ2

)
=

(
1cos θ2
eiφsin θ2

)
Similarly, for λ2 = −1, we can apply a similar form of reasoning and

find coefficients to the eigenvector from exercise 3.3 so that |λ2〉 is orthogonal
to |λ1〉 .

(
cos θ2 eiφsin θ2

)( c sin θ2
−d cos θ2

)
= 0

cos
θ

2
csin

θ

2
− eiφsinθ

2
dcos

θ

2
= 0

Notice that c = 1 and d = e−iφ are solutions to the equations.

For λ2 = −1, |λ2〉 =

(
csin θ2
−dcos θ2

)
=

(
1sin θ2

e−iφcos θ2

)
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Exercise 3.5

Suppose that a spin is prepared so that σm = +1. The apparatus is then
rotated to the n̂ direction and σn is measured. What is the probability that
the result is +1?

Solution

From exercise 3.4, we know the eigenvector of an arbitrary n axis is
given by

|+λ〉 =

(
1cos θ2
eiφsin θ2

)

P (+n) = || < +m|+ n > ||2 = ||
(
1 0

)( 1cos θ2
eiφsin θ2

)
||2 = cos2 θ2
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